

Experiment 3.2

Implementation of Principal component Analysis

Student Name: Rajdeep Jaiswal Branch: CSE Semester: 5th Semester Subject Name: Machine Learning Lab UID: 20BCS2761 Section/Group: 902 wm-B

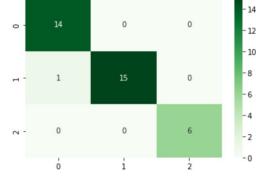
Subject Code: 20CSP-317

Aim: Implementation of Principal component Analysis.

Objective: To prepare a model with Principal component Analysis.

Data Set Chosen: Principal component Analysis

Result and output:



Implementation of Principal component Analysis

In [1]:	<pre>import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns</pre>											
Out[1]:	<pre>dataset = pd.read_csv('Wine.csv') dataset.head() Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols Proanthocyanins Colc</pre>											
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29		
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28		
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81		
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18		
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82		

COMPUTER SCIENCE & ENGINEERING

COMPUTER SCIENCE & ENGINEERING


```
1.00
               precision recall f1-score support\n\n
                                                       1 0.93
      0.97 14\n 2 1.00 0.94 0.97
                                                       16\n
                                                           3
                                                                      1.0
     0 1.00 1.00 6\n\n accuracy
macro avg 0.98 0.98 0.98 36\nweighted avg
                                                         0.97
                                                                     36\n
                                                          0.97
                                                                0.97
                                                                       0.
          36\n'
      97
In [6]: ac = accuracy score(y test, y pred)
      ac
```

```
Out[6]: 0.97222222222222222
```

Result: Accuracy of the model is approximately 95%.